Computational Chemistry and Chemical Bond Theory – dr. hab. Cina Foroutan-Nejad

Title	Computational Chemistry and Chemical Bond Theory
Lecturer	Dr. Cina Foroutan-Nejad
Name of the unit	Institute of Organic Chemistry PAS
Number of ECTS credits	1 ECTS
assigned to the course	
Form	Lecture, 5 h/semester
Language	English
Learning outcomes for the	Introduction to main concepts: Basis set, Functional, Wavefunction
subject in terms of:	-In the first lecture I will introduce all terms that are frequently used in
knowledge, skills and social	the terminology of computational chemistry to make sure that students
competences	are familiar with the concepts that are widely used in the manuscripts.
	Potential Energy Surface
	-In the second lecture I will introduce the concept of PES and how
	computational tools should be used to locate local minima, transition
	states and simple mathematical concepts behind them.
	Chemical Bonds in Quantum Mechanics
	-In the last lecture I will make a bridge between the chemical concepts
	used by experimental chemists and the concepts used by
	computational chemists. I will briefly explain the dilemma of chemical
	bonding and the misunderstandings between theory and experiment
	when it comes to classical concepts.
Implementation method	Lectures will be presented by PowerPoint.
Prerequisites and additional	Basic knowledge of chemistry
requirements	
Didactic methods used	Lectures will introduce basic concepts to the students.
Methods of checking and	Oral exam.
assessing the learning	
dectoral students	
The form and conditions of	Docs/fail
nassing the source	
Course content	The course is tuned to sure part of the knowledge of the PhD students
course content	that is built on the basis of old concents in chemistry. The lectures will
	hopefully help them to shed obsolete knowledge and replace them with
	state-of-the-art knowledge in computational and physical chemistry
	Basic concents like notential energy surface or the concents of chemical
	bond, orbitals, and distinction between ground-, response-, and
	excited-state properties will be discussed.
List of basic and	1. Computational Organic Chemistry, Steven M. Bachrach.
supplementary literature	DOI:10.1002/9781118671191. Wiley & Sons. Inc.
,	2. Essentials of Computational Chemistry: Theories and Models.
	Christopher J. Cramer, ISBN: 978-0-470-09182-1, Wiley & Sons, Inc.
	3. Quantum Chemistry, 7th Edition, Ira N. Levine, ISBN-10: 0-321-
	80345-0, Pearson.