Warszawska Szkoła Doktorska Nauk Ścisłych i BioMedycznych

Sekretariat:

phdoffice@warsaw4phd.eu

SPOTLIGHT TALK – 12/12/2024

We are pleased to invite you to a Mini-Symposium on Alternative Theories of Gravity and Cosmology featuring two invited speakers from Mexico. The event will take place at Institute of Physics PAS, allowing for two talks and plenty of time for extended discussions.

Talks:

  • “f(R) gravity: a robust approach” given by Dr Luisa Jaime (National Autonomous University of Mexico)
  • “Foundations of Einsteinian higher-curvature gravity” given by Dr Gustavo Arciniega (National Autonomous University of Mexico)

When and where?

12th December 2024, 11:00 am
at the IP PAS, room 203, duration: 3h 30 min

 


This Mini-Symposium is partly supported by the NAWA-STER program.

 

Advanced Lecture Series – 12/12/2024

The Warsaw Doctoral School in Natural and Biomedical Sciences and the Institute of Physical Chemistry PAS cordially invites you to a Advanced Lecture Series – BIOLOGY-INSPIRED CHEMISTRY talk.

The talk is given by dr. Mariana Kozłowska (Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Germany).

When and where?

on 12th December 2024, 10:00 am at IChF Aula
Duration: 60 min + question time

Talk abstract

An interesting concept, permitting the study of a variety of new photophysical phenomena is based on the assembly of modulated light- and electron-responsive materials. Three-dimensional structure of such materials is often driven by noncovalent interactions that control intermolecular interaction patterns and condensed state geometries. However, the resultant optoelectronic response may also be significantly impacted by the vibrational flexibility of molecules in an assembly. The prediction of noncovalent interactions, the control of supramolecular assembly and the consideration of materials’ dynamics are challenging, limiting further modification of molecules for new materials with desired photoinduced properties.

In my talk, I will demonstrate the application of multiscale modeling and automated workflow tools for understanding the assembly of functional organic molecules in pillar-layered and surface-anchored metal-organic frameworks. I will explain the prediction of their photoconductive, photoswitchable and chiroptical properties, as well as the molecular bases of light-induced phenomena and the influence of noncovalent interactions and molecular motions.

 

This event is supported by the Polish National Agency for Academic Exchange, grant no. BPI/STE/2021/1/00034/U/00001

 

Advanced Lecture Series – 27/11/2024

The Warsaw Doctoral School in Natural and Biomedical Sciences and the Institute of Physical Chemistry PAS cordially invites you to a Advanced Lecture Series – BIOLOGY-INSPIRED CHEMISTRY talk.

The talk is given by dr. Vito Vurro (Università di Bologna, Dipartimento di Fisica e Astronomia, Bologna, Italy; Istituto Italiano di Tecnologia, Center for Nano Science and Technology, Milano, Italy).

When and where?

November 27th, 2024, 10:00 am at IChF Aula
Duration: 60 min + question time

Talk abstract

Interacting with living cells has always been a challenging problem. The biological environment can be associated with an electrolyte in which the commonly used electrical signals tend to spread. Furthermore, contactless and wireless methods are extremely appealing due to their ability to leave unaltered the cell and tissue condition. Following this idea, light represents a clean and spatiotemporal precise tool to achieve effective bio-stimulation. Material-based light-transducers, such as conjugated molecules and macromolecules, have proven their efficacy at the interface with living cells and tissues. The interaction is possible thanks to the photophysics, biocompatibility and versatility in chemical synthesis of the molecular actuators. Exploiting a biomimicking approach a molecular phototransducer will be presented analysing both its photo/chemical properties and its ability to control cell activity. Finally as a case of study its application as a pacing tool will be presented validating this molecular phototransducer as an innovative tool for muscle cells contraction.

 

This event is supported by the Polish National Agency for Academic Exchange, grant no. BPI/STE/2021/1/00034/U/00001

 

Advanced Lecture Series – 21-22/10/2024

The Warsaw Doctoral School in Natural and Biomedical Sciences and the Institute of Organic Chemistry PAS cordially invites you to a Advanced Lecture Series.

The talk is given by Professor Dr. Holger F. Bettinger (University of Tübingen, Germany).

Agenda
Reactive intermediates are central to the understanding of chemical reactions. Due to their short lifetime their detailed study is challenging. One method that allows convenient study of highly reactive species is cryogenic matrix isolation. Here, reactive molecules or their precursors are frozen out in a large excess of inert gas (mostly argon, but also neon, krypton or xenon can be employed). This precludes intermolecular reactions and provides an environment for the spectroscopic study of the entrapped molecules. Typically, infrared spectroscopy, UV/vis spectroscopy and electroparamagnetic spectroscopy are employed for the analysis. The method is also well suited for the study of weak intermolecular interactions, e.g., hydrogen bonding, dative interactions etc. I will present the method and some of its seminal applications in the student lectures before reporting our own work in this area and its interconnection to the development of novel materials for energy storage.

When and where?

LECTURE SERIES: November 21, 2024 (Thursday) – conference room IOC PAS, Warsaw, Kasprzaka 44/52
3:00 – 4:30 pm, Lecture 1: The study of reactive intermediates with the matrix isolation technique.
4:45 – 6:15 pm, Lecture 2: Organic and organometallic diradicaloids studied by matrix isolation.

Registration at aleksandra.butkiewicz@icho.edu.pl

OPEN LECTURE: November 22, 2024 (Friday) – 10 am – aula IOC/ICP PAS, Warsaw, Kasprzaka 44/52
“Boron-nitrogen heterocycles for energy storage” Professor Dr. Holger F. Bettinger

About the lecturer

Professor Dr. Holger F. Bettinger was born in Nördlingen, Germany, in 1970. He studied chemistry at the Friedrich-Alexander Universität Erlangen-Nürnberg and graduated in 1998 with a Ph.D. under the supervision of Prof. Paul von Ragué Schleyer. After postdoctoral research at the University of Georgia (Athens, GA, USA), Ruhr-Universität Bochum (Germany) and Rice University (Houston, Texas, USA), he started his independent research group at Bochum in 2001 and achieved habilitation in organic chemistry in 2005. Since 2008 he is professor at the Eberhard Karls University Tübingen, where he currently acts as director of the Institute of Organic Chemistry. His research interests include reactive molecules of organic and organometallic nature as well as their use as building blocks in organic materials. He received a number of awards among them an ERC Synergy Grant, and is author of more than 190 papers.

This event is supported by the Polish National Agency for Academic Exchange, grant no. BPI/STE/2021/1/00034/U/00001

 

SPOTLIGHT TALK – 30/10/2024

The Warsaw Doctoral School in Natural and Biomedical Sciences and the Institute of Physics PAS cordially invites you to a SPOTLIGHT TALK.

The talk is given by Prof. David J. Wales (Cambridge University).

When and where?

30th October 2024, 12:00 pm
at the IP PAS Auditorium, duration: 45 min + question time

Abstract

The potential energy landscape provides a conceptual and computational framework for investigating structure, dynamics and thermodynamics in atomic and molecular science.

This lecture will summarise recent developments for global optimisation, enhanced sampling, and rare event dynamics.

A variety of recent applications will be presented including proteins, nucleic acids, coarse-grained models, and design principles for self-assembly of mesoscopic structures, with recent results for global kinetics based on first passage time distributions.

This event is supported by the Polish National Agency for Academic Exchange, grant no. BPI/STE/2021/1/00034/U/00001.

About the speaker

David J. Wales received his BA degree from Cambridge University in 1985, PhD in1988, and ScD in 2004. He was a Lindemann Trust Fellow in 1989, a Research Fellow at Downing College Cambridge in 1990, a Lloyd’s of London Tercentenary Fellow in 1991, and a Royal Society University Research Fellow from 1991 to 1998. In 1998 he was appointed to a Lectureship in Cambridge and is now Professor of Chemical Physics and Chair of the Theory group. He was awarded the Cambridge University Norrish Prize for Chemistry and the Gonville and Caius College Schuldham Plate in 1985, the Meldola Medal and Prize in 1992 and the Tilden Prize in 2015, both by the Royal Society of Chemistry. He was a Baker Lecturer at Cornell University in 2005, the Inaugural Henry Frank Lecturer at the University of Pittsburgh in 2007, Distinguished Lecturer at the National Institute of Standards and Technology, USA in 2018, and was awarded a Visiting Miller Professorship at the University of California, Berkeley, for 2020. He was elected a Fellow of the Royal Society in 2016. In 2020 he became the inaugural recipient of the ICReDD Award from Hokkaido University and received a Humboldt Research Prize from the Alexander von Humboldt Foundation. He is an Honorary Professor at the University of Warwick for 2022-2025, Infosys Distinguished Visiting Professor, Harish-Chandra Research Institute, Allahabad, 2023, and Distinguished Visiting Professor, New York University, 2024. His research primarily involves the exploration of energy landscapes, with applications to chemical biology, spectroscopy, machine learning, clusters, solids and surfaces.

SPOTLIGHT TALK – 15/10/2024

The Warsaw Doctoral School in Natural and Biomedical Sciences and the Institute of High Pressure Physics PAS cordially invite you to a SPOTLIGHT TALK.

The talk is given by Prof. Joseph Casamento (Massachusetts Institute of Technology, Department of Materials Science and Engineering, USA).

When and where?

15th October 2024, 2:00 pm
at the IHPP PAS, New Technologies Building,
Al. Prymasa Tysiąclecia 98, seminar room, 2nd floor
Duration: 60 min +

Abstract

Nitride semiconductors have enabled transformative technologies that have changed the way people live their lives. They are pivotal components of a plethora of optical, electronic, and photonic devices, and their share in the expanding global semiconductor market is growing. Specific technological examples include use as light emitting diodes (LEDs) in solid state lighting, displays and cell phones, and blue to ultraviolet lasers. They also find use in radio-frequency (RF) filters and in bulk and surface acoustic wave resonators and transistor amplifiers in the form of high electron mobility transistors (HEMTs).

The ability to expand the chemistry and functionality of nitride semiconductors opens up new technological platforms. In this talk, I will discuss avenues to enhance the functionality and utilization of the nitride materials family by alloying with novel transition metals to generate novel properties. New technology spaces enabled by magnetic, thermoelectric, and superconducting properties from novel nitride materials will be introduced. A specific focus will be on the aspects of electronic response and implications on polarizability of novel nitrides such as aluminum scandium nitride (Al,ScN) and aluminum boron nitride (Al,BN). Highlights of this work include enhanced piezoelectric response and dielectric permittivity in epitaxial layers, ferroelectric HEMT performance, and ferroelectric behavior below 10 nm thickness at back end of line (BEOL) compatible growth temperatures. This emerging research area capitalizes on significant opportunities for materials discovery, heterostructure design, and device simulation and fabrication.

Advanced Lecture Series – 17-18/10/2024

The Warsaw Doctoral School in Natural and Biomedical Sciences and the Institute of Organic Chemistry PAS cordially invites you to a Advanced Lecture Series.

The talk is given by Prof. Tomáš Šolomek (Van‘t Hoff Institute for Molecular Sciences, University of Amsterdam, The Netherlands).

When and where?

LECTURE SERIES: October 17, 2024 (Thursday) – conference room IOC PAS, Warsaw, Kasprzaka 44/52
2:30 – 4:00 pm, The basics of the electronic structure of organic diradicaloids
4:15 – 5:45 pm, Selected examples of their reactivity accessed by using light or heat
Registration at aleksandra.butkiewicz@icho.edu.pl

OPEN LECTURE: October 18, 2024 (Friday) – 10 am – aula IOC/ICP PAS, Warsaw, Kasprzaka 44/52
“Topography and Topology: Unusual Playground for Chromophores” Prof. Tomáš Šolomek

About the lecturer

Tomáš Šolomek was born in Slovakia and chose chemistry as a career due to a passionate chemistry teacher that he had in the high-school. He obtained his Bachelor and Master’s degrees in organic photochemistry at the Masaryk University, Czechia. In 2014, he completed his PhD degree in chemistry under co-tutorship at the Masaryk University (Prof. Petr Klán) and the University of Fribourg (Prof. Thomas Bally), Switzerland, combining experiments and theory to understand the nature of reactive intermediates generated by light or heat. He then became an Experientia Foundation postdoctoral fellow at the University of Basel with Prof. Michal Juríček. From 2015-2017, he was a Swiss National Science Foundation postdoctoral fellow at Northwestern University (USA) in the group of Prof. Michael Wasielewski.
Dr. Šolomek founded his independent research group at the University of Basel as a fellow of the Ambizione program of the Swiss National Science Foundation (2018), exploring porous covalent organic cages with built-in photo- and redox-active units. After receiving an ERC Starting grant TOPOCLIP (2021), he became a non-tenure track assistant professor at the University of Bern, where his team worked on the stable molecular representations of topologically complex carbon nanostructures. From January 2023, Dr Šolomek became a tenure-track assistant professor at Van ‘t Hoff Institute for Molecular Sciences in Amsterdam.
In his research, Tomáš Šolomek aims to improve the design of more efficient and sustainable organic optoelectronic materials and organic photocages. To accomplish this, he blends the synthesis of organic molecules with the use of spectroscopy and computational chemistry.

This event is supported by the Polish National Agency for Academic Exchange, grant no. BPI/STE/2021/1/00034/U/00001

Inauguration of the Academic Year 2024/2025

It is our pleasure to invite our PhD Students to the Inauguration of the Academic Year 2024/2025 of the Warsaw PhD School in Natural and BioMedical Sciences (Warsaw-4-PhD).

The inauguration has been scheduled for 7th October 2024 (Monday) at 10:00 a.m. and will take place in the auditorium of the Maciej Nałęcz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences (IBIB PAN) at 4 Ks. Trojden Street in Warsaw.

The opening lecture at the ceremony will be given by Nobel Laureate in Chemistry – Prof. Aaron Ciechanover.

Please note that online registration is required to attend the event. To secure your place, kindly complete the registration form.

We will be very pleased if you have the possibility to take part in this important event for the Warsaw-4-PhD School.

SPOTLIGHT TALK – 13/09/2024

The Warsaw Doctoral School in Natural and Biomedical Sciences and the Institute of High Pressure Physics PAS cordially invite you to a SPOTLIGHT TALK.

The talk is given by Prof. Åsa Haglund (Chalmers University of Technology, Göteborg, Sweden).

When and where?

13th September 2024, 10:30 am
at the IHPP PAS, New Technologies Building,
Al. Prymasa Tysiąclecia 98, seminar room, 2nd floor
Duration: 60 min +

Abstract

The continued development of semiconductor lasers in the UV-B (280-320 nm) and UV-C (<280 nm) faces many challenges compared to visible lasers, including high defect densities, low electrical and thermal conductivity, low electrical injection efficiency, low reflectivity mirrors, and higher sensitivity to surface roughness. Despite this, there is a global effort working to tackle these problems and to devise innovative solutions to circumvent the more fundamental material limitations. Thanks to progress in many of these areas we have now seen, in both UV-B and UV-C, the first electrically driven edge-emitting lasers, optically pumped vertical-cavity surface-emitting lasers (VCSELs) and, more recently, optically pumped photonic crystal surface emitting lasers (PCSELs). UV lasers are now on the move.

In this talk I will focus primarily on surface-emitting UV lasers: VCSELs and PCSELs. VCSELs, because of their small active areas (<10 µm diameter), have the potential to deliver optical output powers in the mW range with beam divergence ranging from a few up to 10°, with a low threshold current below 1 mA. PCSELs, on the other hand, are large area devices (>100 µm), resulting in high potential output powers in the Watt range and beam divergence of less than 1°, but with consequently large threshold currents in the range of 1 A. VCSELs and PCSELs have many similarities, notably that they both rely on photonic crystals; a one-dimensional photonic crystal form the distributed Bragg reflector in a VCSEL, while a two-dimensional photonic crystal is employed in a PCSEL. Additionally, both devices require very precise spectral control over the resonance since modal gain strongly depends on the overlap between the gain peak and the sparsely placed modes of low loss. In a VCSEL, this resonance is set by the distance between the DBRs, and in a PCSEL by the photonic crystal parameters.

Here we will show that for VCSELs, using a special lift-off technique based on photo-assisted electrochemical etching, we obtain excellent cavity length control with deviations between devices of <1%. Moreover, in PCSELs, we will demonstrate how we can select the desired lasing mode by controlling the photonic crystal parameters, thereby obtaining high-quality far-fields with beam divergence of <1°. Looking towards electrically driven UV VCSELs, a first step towards overcoming the problem of poor hole conduction and current spreading has been taken in the form of a tunnel-junction based resonant-cavity light-emitting diode, in which a tunnel junction enables the use of an n-doped layer for current spreading on the p-side of the device. Thus, while UV surface-emitting lasers still face significant challenges, they are nonetheless inching closer and closer to becoming technologically and societally useful devices.

About the lecturer

Åsa Haglund’s research interests encompasses III-nitride lasers and light-emitting diodes in the visible and ultraviolet wavelength regions. The focus is on nanostructuring for new optical functionality and thin-film devices realized by electrochemical etching which enables vertical-cavity surface-emitting lasers (VCSELs) and photonic crystal surface-emitting lasers (PCSELs). Åsa has a Master’s Degree in Physics from Gothenburg University and received a PhD degree in Electrical Engineering in 2005 from Chalmers University of Technology. She has been a visiting researcher at Ulm University in Germany and Lund University in Sweden and is since 2018 a Professor at Chalmers University of Technology. She is a recipient of for example the European Research Council’s consolidator grant (2020), the Swedish Research Council’s consolidator grant (2019), and the Swedish Foundation for Strategic Research’s young research leader award (2014).

SPOTLIGHT TALK – 17/09/2024

The Warsaw Doctoral School in Natural and Biomedical Sciences and the Institute of Physics PAS cordially invites you to a SPOTLIGHT TALK.

The talk is given by Dr. Igor Reva (CERES, Department of Chemical Engineering, University of Coimbra, Portugal).

When and where?

17th August 2024, 10:30 am
at the IP PAS Leonard Sosnowski Auditorium, duration: 45 min + question time

Abstract

Studies on the photochemical reactivity and characterization of the primary photoproducts permit a deeper understanding of reaction mechanisms. In this talk, the experimental technique of low temperature matrix isolation allowing to experimentally test the incipient steps of photochemical reactions, and to characterize novel species with unusual functionalities, properties and behavior will be addressed.

We shall start with the fundamentals of the method and show its possibilities in the studies of structure and reactivity at cryogenic temperatures (~10 K). Typically, the molecules are embedded in solid inert matrices (Ar, Xe, N2) and excited in situ either by a broadband light source, such as Hg/Xe lamp, or by narrowband light generated in an optical parametric oscillator or in a diode laser. The structures of reactants and photoproducts are characterized experimentally by infrared spectroscopy and theoretically by computation of vibrational spectra.

The potential of the method will be demonstrated using several conformational studies. Narrowband near-infrared irradiations, tuned at the frequencies of the OH or NH first overtone modes, result in conformational switching. Hereby, it becomes possible to characterize high-energy conformers, not accessible experimentally otherwise, and study processes of intramolecular vibrational energy transfer. The examples will include carboxylic acids, amino acids, nucleobase cytosine, among others. Besides, the isomerizations occurring in matrix-isolated molecules in dark (H-atom and heavy-atom tunneling) and those induced by the light source of the spectrometer will be discussed.

Further examples concern the reactivity induced by frequency-tunable UV light. Here, H-atom transfer reactions, resulting in oxo-hydroxy, amine-imino, thiol-thione isomerism, for phenol, cytosines, thiophenol, and some heterocycles will be described.

In general, this contribution will provide a selection of experimental and computational results, co-authored by the presenter, providing insight into the observed reactivity.

This event is supported by the Polish National Agency for Academic Exchange, grant no. BPI/STE/2021/1/00034/U/00001.

About the speaker

Igor Reva graduated in Biophysics, with honors, from the Kharkiv State University. Upon graduation, worked for several years as engineer, at the Institute for Low Temperature Physics & Engineering (ILTPE), a major research centre of the National Academy of Sciences of Ukraine (in Kharkiv), where he mastered diverse technical aspects of cryogenic applications.

In 1995, completed a PhD degree in Molecular Physics & Biophysics, at ILTPE.

In July 1997 – September 1999, Igor Reva was awarded a post-doctoral fellowship of the Alexander von Humboldt Foundation at Max-Planck-Institute (MPI) for Radiation Chemistry (Mülheim-an-der-Ruhr, Germany) and MPI for Nuclear Physics (Heidelberg, Germany).

Since October 1999 and until 2020, moved to the University of Coimbra (UC), Portugal, where he worked as: (i) post-doctoral fellow of the Portuguese “Fundação para a Ciência e a Tecnologia” (FCT), (ii) Researcher (FCT program “Science-2007”), (iii) Principal Researcher (program “Investigador FCT”), all above positions at the Centre of Chemistry of Coimbra, Department of Chemistry (DQ) at UC. Since 2021 (till present), Igor Reva works at the Research Centre hosted at the Department of Chemical Engineering (DEQ) at UC. Since 2024, this research centre at DEQ/UC is named CERES (from Portuguese: “Chemical Engineering and Renewable Resources for Sustainability”).

In 2010, the degree of Habilitation in Chemistry was conferred on Igor Reva by UC, with specialization in Molecular Spectroscopy.

The engineering skills and qualification, acquired by Igor Reva at ILTPE, allowed him subsequently to design and construct in Portugal (at DQ/UC) a home-made fully operational experimental setup for matrix-isolation spectroscopy and photochemistry at cryogenic temperatures. This setup is now an integrated part of Coimbra Laser Lab (CLL), hosted at DQ/UC. CLL is a Research Infrastructure of FCT established at UC and is a part of LaserLab Europe – Consortium of European Laser Research Infrastructures (35 organizations from 18 countries). At CLL, Igor Reva provided scientific supervision and technical training for users from +20 countries.

Main specializations of Igor Reva are infrared spectroscopy, photochemistry, photochromic molecules, molecular switches, reactive intermediates, systems with open electronic shells, quantum mechanical tunneling, including their experimental and computational studies.

He participated in +30 competitively funded FCT projects (in 8 as principal investigator). As of September 2024, published +170 articles in peer-reviewed journals, in 1/3 of these Igor Reva is the corresponding author. H-index: 42 (Publons) / 43 (Scopus), with +5 K citations.

Considering the present STER application to NAWA, it should be noted that Igor Reva participated in two bilateral projects with IF PAN, acting as coordinator for the Portuguese side. Each of these two projects lasted two years. Collaborations  with researchers from IF PAN resulted in 42 joint peer-reviewed publications.